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The COVID-19 pandemic has accelerated methods to facilitate contactless evaluation of patients in hospital settings. By
minimizing in-person contact with individuals who may have COVID-19, healthcare workers can prevent disease transmission
and conserve personal protective equipment. Obtaining vital signs is a ubiquitous task that is commonly done in person by
healthcare workers. To eliminate the need for in-person contact for vital sign measurement in the hospital setting, we
developed Dr. Spot, a mobile quadruped robotic system. The system includes IR and RGB cameras for vital sign monitoring
and a tablet computer for face-to-face medical interviewing. Dr. Spot is teleoperated by trained clinical staff to simultaneously
measure the skin temperature, respiratory rate, and heart rate while maintaining social distancing from patients and without
removing their mask. To enable accurate, contactless measurements on a mobile system without a static black body as
reference, we propose novel methods for skin temperature compensation and respiratory rate measurement at various
distances between the subject and the cameras, up to 5m. Without compensation, the skin temperature MAE is 1.3°C. Using
the proposed compensation method, the skin temperature MAE is reduced to 0.3°C. The respiratory rate method can provide
continuous monitoring with a MAE of 1.6 BPM in 30s or rapid screening with a MAE of 2.1 BPM in 10s. For the heart rate
estimation, our system is able to achieve a MAE less than 8 BPM in 10s measured in arbitrary indoor light conditions at any
distance below 2 m.

1. Introduction

The COVID-19 pandemic continues to cause disruption in
healthcare systems globally. Despite the presence of
COVID-19 pharmacotherapies and vaccines, waves of infec-
tion continue to stress healthcare systems globally. While the
clinical diagnosis of COVID-19 is not difficult, screening
and triaging large numbers of individuals who are infected
with COVID-19 poses major challenges among healthcare
workers. Part of screening individuals for COVID-19 centers

around obtaining vital signs like the heart rate, respiratory
rate, skin temperature, blood pressure, and oxygen satura-
tion. Vital sign abnormalities can help clinicians make
important disposition decisions, yet the simple act of placing
patients on monitors requires personal protective equip-
ment, in-person interactions that may spread disease, and,
in settings where resources run scarce, personnel to actually
perform vital signs [1]. For these reasons, the development
of contactless mobile systems can streamline triage and con-
tinuous monitoring in hospitals and in public settings [2].
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Previous work has investigated different kinds of con-
tactless monitoring systems using radio signals [3, 4] and
radar-based sensors [5]. These systems can easily obtain
the respiratory rate (RR) and heart rate (HR) from multiple
people without interfering with their daily activity but are
unable to capture other vital signs relevant to COVID-19
such as elevated skin temperature and decreased blood oxy-
genation. In order to screen for fevers from other infectious
disease epidemics, commercial infrared (IR) camera systems
have been demonstrated to reliably screen individuals for
fevers in indoor commercial settings like airports [6]. Similar
systems using red-green-blue (RGB) cameras can extract HR
[7], blood oxygen saturation [8, 9], and blood pressure [10]
from skin RGB pixel changes using a recorded color image
of human skin surfaces. This is known as remote photo-
plethysmography (rPPG) and can be achieved with
consumer-level cameras [11]. Recent advances in computer
vision (CV) and machine learning enable automatic tracking
of the region of interest (ROI) of human faces that are rele-
vant for measuring vital signs, even if the faces are from a
crowd and wearing masks. Combining these systems offers
the ability to generate contactless vital sign measurements
on a mass scale to rapidly detect abnormalities that may be
consistent with COVID-19 disease. With an increasing need
for solutions to screen individuals who return to work, travel
from areas of high viral transmission, and participate in
regional- and country-level reopenings during the COVID-
19 pandemic, contactless camera systems offer a simple,
noninvasive, and scalable system to screen for vital sign
abnormalities.

To date, most of these monitoring systems are static and
deployed in the emergency department or respiratory clinic
triage because of the need to carefully standardize ambient
temperature and the distance of the subject to the camera
system. In practicality, the chaotic nature of emergency
departments which are managing large surges of patients
may make these parameters difficult to maintain. Addition-
ally, alternate care areas utilized during large surges of
patients may alter the ambient conditions present in an
emergency department and render traditional systems inac-
curate. There is therefore a need to develop techniques that
account for mobility of these systems and their function in
disparate environments with changing ambient conditions.

In this work, we developed a mobile robotic system for
contactless vital sign monitoring in hospital settings. This
system consists of robot-controlled IR and multimono-
chrome cameras that automatically tracks individuals and
measures their skin temperature, HR, and RR while screen-
ing for fever, tachypnea, and tachycardia. In order to dem-
onstrate its utility on a mobile system, we deployed the
camera system as a payload on the Spot robot (Dr. Spot)—
a quadruped robotic system developed by Boston Dynamics
[12, 13]—and developed an operator-friendly platform for
HCWs. We tested the full system inside a hospital setting
to measure vital signs central to COVID-19 evaluation and
verified measurements against ground truth sensor readings.

The main contributions of this paper are fourfold. First,
we present a fully developed camera system mounted on a
mobile robotic system that enables HCWs to easily perform
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basic triage in nonstandard environments. This system
enables HCW's to screen patients while being socially dis-
tanced, avoiding disease transmission, and conserving PPE.
Second, we propose a novel method for IR camera thermal
compensation to enable skin temperature measurement on
a mobile, robotic platform. Previous works in machine
vision focus on measuring vital signs in static environments,
and systems utilizing an IR camera further require the pres-
ence of a black body at a fixed distance for thermal calibra-
tion [14]. Our proposed thermal compensation method
overcomes these challenges by using ambient temperature
and the distance to the measured subject to rectify sensor
readings. Third, we propose and validate a novel method
for measuring the respiratory rate with an IR camera based
on periodic temperature variations in a subject’s facemask
region. This method enables accurate, real-time respiratory
rate measurements and is ideal in a hospital setting with
mandatory masking requirements. Finally, we demonstrate
that the HR can still be obtained from subjects wearing a
mask without sacrificing the accuracy. We also evaluate the
distance effect on rPPG accuracy and find the minimum
threshold in the number of ROI pixels.

2. Materials and Methods

2.1. Experimental and Technical Design. In response to
potential surges of COVID-19 cases, Brigham and Women’s
Hospital (Boston, MA) deployed a large 25 x 45 foot triage
tent (Supplementary Information Appendix I (available
here)). Well appearing, ambulatory individuals presenting
to the emergency department (ED) with symptoms consis-
tent with COVID-19 disease (upper respiratory infection,
fevers, or other exposure to COVID-19) were triaged to
the tent for initial evaluation. Participants underwent a
brief-nurse-driven interview after which they were seated
in the tent waiting area which comprised ten chairs spaced
six feet apart. Patients then proceeded to a separate, semipri-
vate space within the tent, where they met a clinician who
conducted a brief, scripted interview regarding COVID-19
exposure and current symptoms. Additionally, the clinician
gathered a full set of vital signs (body temperature, HR,
RR, and blood pressure) using standard equipment. The cli-
nician then decided if the patient required additional care
within the ED or if they can be tested and discharged from
the tent.

We developed a robotic platform to enable contactless
vital sign monitoring and teleinterviews, thus reducing expo-
sure of HCWs to patients and reducing potential disease
transmission. Recruitment of human subjects to test and val-
idate the camera-based system was reviewed and approved
by the Mass General Brigham Institutional Review Board
(IRB 2021P001334). The robot must operate under several
terrains and conditions, including the outdoor triage tent,
the indoor ED rooms, and the many indoor-outdoor inter-
faces. Thus, we collaborated with Boston Dynamics to
deploy the quadruped robot Spot (Dr. Spot), which can eas-
ily navigate over the loose gravel, curbs, and obstacles in the
testing environment [12].
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F1GURE 1: Operation of Dr. Spot. (a) Dr. Spot with the IR camera, three monochrome cameras, and iPad. (b) Patient screening detection with
Dr. Spot. (c) Teleinterview with Dr. Spot. (d) Handheld controller for Dr. Spot with vital sign measurement results. (e¢) GUI for Dr. Spot
showing the heart rate waveform, respiratory rate waveform, and estimated skin temperature.

Figures 1(a) and 1(b) show patient screening with Dr.
Spot. The IR camera (Optris PI 640i) is used to determine
the skin temperature and respiratory rate. The three mono-
chrome cameras have optical filters for wavelengths of
630 nm, 532 nm, and 465 nm; these cameras are used to deter-
mine the heart rate. Figure 1(c) shows teleinterviewing with
Dr. Spot. The iPad enables clinicians to interview patients
via secure video conferencing. Two graphical interfaces
were developed to provide real-time feedback to HCWs.
Figure 1(d) shows the handheld controller used by trained
HCWs to control Dr. Spot, while Figure 1(e) shows the
more detailed robotic operation system (ROS) GUL

The operating principles of the system are shown in
Figure 2(a). A HCW maneuvers Dr. Spot in front of a seated
patient. The procedures of generating RR, elevated skin tem-
perature, and HR are described in Figure 2(b). There are two
regions of interest (ROI) in a subject’s face: the forehead ROI
is used to measure the skin temperature and HR, while the
mask ROI is used to measure RR. To accurately segment
the forehead, we employed the InsightFace face analysis
library to detect faces and facial landmarks [15]. Since
InsightFace is trained on RGB images, we rescaled the raw
thermal frames to an 8-bit depth with the corresponding
range of [0,255] on each RGB channel. Let x,.., ¥, .. Wpox
and hy, be the top left x coordinate, top left y coordinate,
width, and height of the facial bounding box, respectively;
let y.. be the y coordinate of the facial landmarks corre-

sponding the eyes. The forehead ROI is selected as the rect-
angular region with the top-left corner (xp.. .. and

bottom-right corner (xXyo + Whoyx> Yeye): The mask ROI is

selected as the rectangular region with the top-left corner
(pox + 0.1 % Wyoy, Vpor + 0.5 * Ay ) and bottom-right corner

(xbox +0.9 = Whox> Ypox T hbox)'

2.2. IR Camera: Thermal Compensation, Skin Temperature
Measurement, and Fever Detection. Infrared thermography
can detect elevated skin temperature which may indicate the
presence of a fever. An IR camera measures the skin tempera-
ture distribution but is sensitive to both the ambient tempera-
ture and the distance to the subject. In the initial iteration of
the camera system, we followed suggestions by the IR camera
manufacturer FLIR and established a baseline by scanning and
saving readings from ten known healthy individuals coming
from similar ambient conditions [16]. Readings from future
subjects at the same ambient temperature scanned would
be compared to this population baseline. Subjects with
facial skin temperature higher than the baseline would be
asked to undergo further diagnostic evaluation.

The success of this approach relies on a calibrated tem-
perature reference or “black body” that needs to be placed
at the same distance from the camera for every measure-
ment. To remove the need of a black body for Dr. Spot, we
investigated the effect of ambient temperature and distance
to subject on IR camera readings. The distance to subject
was acquired after determining the relationship between dis-
tance to subject and the face detection bounding box size.
Using this relationship, we were able to use face bounding
boxes to calculate the distance to the subject. Based on these
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FIGURE 2: System overview. (a) Operating principle of Dr. Spot showing IR images and RGB monochrome images. (a-i) IR camera waveform for
respiratory rate measurement. (a-ii) RGB monochrome waveform for heart rate measurement. (b) Methodology used to calculate vital signs.

experimental results, we proposed a thermal compensation
algorithm that corrects for the ambient temperature and dis-
tance to the subject. We verified the compensation algorithm
by comparing compensated temperatures against ground
truth sensor readings.

2.3. IR Camera: Respiratory Rate Measurement and
Tachypnea Detection. Respiration results in heat exchange
with the environment; Parsons provides the following equa-
tion for estimating this exchange [17]:

Chres + Eres = (0.0014 M[34 — T +0.0173M [5.87 - P,]),

(1)

res ambient]

where C, is the rate of convective heat loss from respira-
tion, E, is the rate of evaporative heat loss from radiation,
Mis the rate of metabolic energy production, T, picn 1S the
ambient temperature, and P, is the ambient pressure. Dr.
Spot is mounted with the Bosch BME280 sensor to deter-
mine T, piene and P,,.

The convective heat loss C, occurs due to the exhala-
tion of hotter air at body temperature and the inhalation of
colder air at ambient temperature. The evaporative heat loss
E.., occurs due to exhalation of air with higher moisture
saturation. During normal breathing, heat exchanged with
the environment quickly dissipates. However, wearing face-
masks creates a “microenvironment” that constrains the
breathing environment; the facemask reduces the permeabil-
ity of air and vapor, limits heat exchange with the ambient
environment, and results in heat retention [18]. Inhalation
of the warm air retained in the facemask results in a heat

transfer from the microenvironment back to the mask
wearer.

The thermodynamics of the facemask during respiration
suggests periodic temperature variations in the mask ROI
corresponding to inhalation and exhalation. We experimen-
tally verify this temperature variation in IR images and pro-
pose a novel method to calculate the respiratory rate and to
screen for tachypnea (respiratory rate greater than 20 BPM).
This variation in temperature is the raw breathing signal. To
obtain RR, we proposed and compared two methods. In
method one, we computed the average peak-to-peak value
and converted this directly into beats per minute. In method
two, we apply a low-pass filter to remove the high-frequency
band noise followed by a fast Fourier transform (FFT). RR is
obtained by selecting the frequency which corresponds to
the highest amplitude in the frequency spectrum. The pro-
posed methods were tested experimentally and validated
against ground truth sensor readings.

2.4. RGB Monochrome Cameras: Heart Rate Measurement
and Tachycardia Detection. Remote photoplethysmography
(rPPG) is a simple yet low-cost optical technique that can
be used to measure blood volume changes underneath the
facial skin via a consumer-level camera. These changes can
be processed to determine the heart rate and screen for
tachycardia (heart rate over 100 BPM). rPPG analysis and
characterization are performed on a combination of
recorded subjects and the UBFC-rPPG dataset (which com-
prises of 42 videos with subjects and their ground truth HR)
[19]. Characterizations requiring skin segmentation use
color-based methods [20].

The light absorption characteristics of bloodstream
hemoglobin exhibit a strong peak at the wavelength between
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500 and 600 nm, which corresponds to the frequency band
of the green light signal captured by an RGB camera. In
the HR estimation algorithm, the light absorption character-
istics are obtained from the forehead ROL Previously, we
used the filtered wavelengths at 660nm, 810nm, and
880nm [21], which is more motion robust for rPPG in a
dark environment, broadening the potential applications of
the camera system [22]. In this work, we used three mono-
chrome cameras with filtered wavelengths at 630nm,
532nm, and 465nm in an indoor environment with bright
lighting condition.

Normally, rPPG is very sensitive to the presence of
motion and noise artifacts. To enable a motion robust rPPG,
de Haan and Van Leest presented the POS method [23].
This method superposes the averaged RGB signals into two
orthogonal signals S(¢) from which the eventual pulse signal
h(t) is determined. The former is defined as

=PeC, () = [sPeNe(ues(t) + u,op(t)),

(2)

where I, is the intensity scalar, P is the 2 x 3 projection
matrix which maps the three RGB signals to two signals, N
is the normalization matrix such that the temporal mean sig-
nal is equal to the unit vector, u, is the unit vector of the
specular intensities while s(¢) is the time varying specular
intensity, u, is the unit vector of the pulsatile intensities,
and p(t) is the time-varying pulsatile intensity. The pulsatile
amplitude is strongest in the green channel [24]. It follows
that the projection matrix P is chosen as

0o 1 -1
-2 1 1

which fulfills the orthogonality requirement. Next, S, (¢) and
S, (t) must be combined into one pulse signal. To do so, the
standard deviations o(S,) to o(S;) are normalized as in
equation (4).

When S, (¢) and S, (¢) are in phase, they push the amplitude
of h(t) through constructive inference. If the two projected
signals are in antiphase, they cancel each other. The under-
lying assumption here is that the specular part of the signal
is rarely in phase with the pulsatile signal.

3. Results

3.1. Skin Temperature Measurement and Thermal
Compensation. To eliminate the need for a static, black body
reference and thus enable a mobile platform, we propose a
thermal compensation algorithm for the IR camera. Six sub-
jects were recorded at distances ranging from 0.5m to 5m
away from the camera and at ambient conditions ranging

from 19°C to 28°C. Experimental results in Figures 3(a)
and 3(b) show that skin temperature variations are affected
both by the distance from the camera and the ambient tem-
perature. At each ambient temperature, there is a linear rela-
tionship between the temperature and the distance. Note
that Figures 3(a) and 3(b) show the subjects with recorded
data from 2m to 5m, which is the intended operating dis-
tance for Dr. Spot. Appendix II in the Supplementary Infor-
mation includes sample data for the other subjects.

The (negative) slopes for the relationship between the
skin temperature and the distance at varying ambient tem-
peratures are shown in Figure 3(c). Through inverse analysis
of Figure 3(c), the compensated skin temperature
(T compensatea) €an be determined from the IR camera mea-
surement (T'g) using feedback from the ambient tempera-
ture (T, piene) @0d the subject’s distance from camera, D.

T =Tir + Tambient " (1900D +3000) = 0.17. (5)

compensated —

To determine the subject’s distance to the camera, we
leverage the relationship between an object’s bounding box
and the object’s distance from the camera [25]. Figure 3(d)
shows the results from three different subjects with different
genders and head sizes. The data from these subjects overlap
with each other, which supports the estimation of the dis-
tance with face bounding box dimensions. These results
show an inverse relationship between the subjects’ distance
and the diagonal length of their face bounding box, L.

D =140.22¢L "1, (6)

A typical subject will not be facing directly at Dr. Spot.
Rather, the subject’s head may be tilted up/down with a
pitch angle 6, or tilted left/right with a yaw angle 0,,,,.

These parameters affect the face bounding box dimensions
and thus the distance estimation. To determine 6, and

Oya> we use OpenCV'’s solvePnP method for pose estima-
tion. Thus, instead of using the diagonal length, L in equa-

tion (5), we will use the corrected diagonal length L_ .. cicq-

. 2 . 2
L B Wl(flthface bounding box helghtface bounding box
corrected — cos (e ) + cos (6 ) '
yaw pitch
(7)

Substituting equations (6) and (7) into (5) results in the
full equation for thermal compensation of IR camera
measurements.

Figure 3(e) shows the measured and compensated tem-
peratures for one subject. The compensated temperatures
are calculated using the above-derived equations. Figure 3
(f) shows the error analysis for the measured and compen-
sated temperatures for all subjects at 5m. The measured
temperature has a maximum MAE of 1.3°C, which occurs
at an ambient temperature of 19°C. The compensated tem-
perature has a maximum MAE of 0.3°C, which occurs at
an ambient temperature of 21°C. The proposed
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FiGuRre 3: Thermal compensation of the IR camera for skin temperature measurement. (a) Measured skin temperature for subjects at 2 m.
Different colors represent different ambient temperatures. (b) Skin temperature for subjects measured from 2m to 5m. Measured
temperatures for each subject are translated vertically and grouped by ambient temperature. For the same subject and ambient
temperature, measured temperatures in (a) represent the same data as the scaled temperatures in (b) at 2m. (c) Effect of ambient
temperature on the relationship between the measured temperature and the distance. (d) Dimensions of the face bounding box vs.
subject’s distance. (e) Measured and compensated skin temperatures for one subject. (f) Error analysis of measured skin temperatures
and compensated skin temperatures for all subjects at 5m. Data for 5m at 19°C is imputed from the line of best fit.

compensation method is able to account for the effects of
distance and ambient temperature, significantly improving
the accuracy skin temperature estimation.

3.2. Respiratory Rate Measurement. We first test our proposed
method for RR measurement on one subject. Using these
results, we select the optimal parameters for quick screening
and continuous monitoring. Then, we set our method at these
parameters and validate it on ten different subjects.

Figure 4(a) shows the test results for one subject after ten
different levels of exercise. The raw breathing signal is
obtained from the thermal readings of the facemask ROI.
Inhalation and exhalation caused periodic troughs and peaks
in the raw breathing signal, respectively. In the peak-to-peak
(P2P) method for calculating RR, the average peak-to-peak

values are computed across various window sizes to deter-
mine RR. In the fast Fourier transform (FFT) method for
calculating RR, the RR is the frequency with the highest
amplitude after applying FFT.

The window size is defined as the time window which is
considered for one RR estimation. The length of the result-
ing vector n is determined by the sampling rate f_ of the
camera and the window size t,, as n =t f .. Choosing a suf-
ficiently large measurement window is crucial for an accu-
rate estimation since it controls the frequency resolution in
the Fourier space. The frequency resolution f, is defined as

fo=te - ®)

1
ty
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FIGURE 4: Respiratory rate estimation with the IR camera for subjec

ts with facemasks. (a) Estimated RR waveforms for one subject after ten

different levels of exercise. IR camera temperature readings are normalized from 0 to 1. (b) Error analysis of RR estimation for waveforms in
(a) with peak-to-peak (P2P) and fast Fourier transform (FFT). Various window sizes are used to determine the best parameters for quick
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mation for 10 subjects standing 2 m from the IR camera. P2P and FFT

are used at the optimal parameters. (d) Error analysis of RR estimation for 2 subjects standing 5m from the IR camera. P2P and FFT are

used at the optimal parameters.

Since f is constant for a given input stream, we can only
choose t,,. The IR camera on Dr. Spot has f, = 30 Hz; setting
t,=20s results in a frequency resolution f,=0.05Hz
=3BPM. To ensure this minimum frequency resolution,
the minimum window size for the FFT method is 20 s. How-
ever, this resolution constraint does not apply to the P2P
method, which operates in the time domain. Rather, the min-
imum window size for the P2P method is constrained by the
minimum RR to be measured. For a minimum RR of 6 BPM,
the period is 10s. To ensure that two peaks can be obtained
from the waveform, two periods of the data must be cap-
tured. Thus, the minimum window size for the P2P method
is 10s.

To successfully screen for COVID-19 patients, Dr. Spot
must be able to detect tachypnea (abnormally high RR).
The maximum measurable RR can be determined from the
Nyquist sampling theorem:

fs Z 2.fmax’ (9)

where f_is the maximum estimable frequency. Using the
Nyquist theorem, the maximum estimable RR is 15Hz or
900 BPM, which exceeds the maximum possible human RR.

To determine the optimal parameters for RR estimation,
the RR is estimated for waveforms in Figure 4(a) at various
window sizes and compared against ground truth sensor
readings. These results are shown in Figure 4(b). The errors
for both the P2P and FFT methods are not correlated with
the subject’s RR. At large window sizes (i.e., 30s), the FFT
method performs better; over a longer interval, noisy signals

become attenuated. At smaller window sizes (i.e., 10s), the
P2P method performs better; obtaining more peak-to-peak
measurements of a periodic signal does not greatly increase
accuracy.

The most accurate method is using FFT at the largest
window size of 30s, which results in average RR error
1.6 BPM. The fastest method is using P2P at the smallest
window size of 10 seconds, which results in an average RR
error of 3.3 BPM. Since the P2P method performs better at
smaller measurement windows, it is used for rapid screening
of patients. Conversely, since the FFT method is more accu-
rate but requires larger measurement windows, it is used for
continuous monitoring of patients.

Having determined the optimal parameters, we validate
our method on 32 waveforms recorded on ten healthy sub-
jects at a distance of 2 m. Their respiratory rates ranged from
6 BPM to 35BPM. Abnormal respiratory rates were simu-
lated by asking subjects to follow a predetermined, coached
breathing patterns displayed to participants in real time.
Appendix IIT in the Supplementory Information shows all
32 respiratory waveforms recorded from the 10 subjects
using Dr. Spot. Figure 4(c) shows the error analysis of these
10 subjects. Continuous monitoring using FFT with a win-
dow size of 30s is most accurate, with MAE =1.6 BPM.
Quick screening with P2P is acceptable, with MAE =2.1
BPM.

The facemask region forms a large region of interest on a
subject. Since the RR is obtained from the facemask region,
the proposed RR method can work at larger distances. We
validate our method 6 waveforms recorded on two healthy
subjects at a distance of 5m. Their respiratory rates ranged
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FI1GURE 5: Heart rate estimation with monochrome cameras. (a) RGB signals captured from the subject’s forehead in a normal ambient
lighting condition. Pulse signal determined from RGB signals using the POS method. (b) Effect of region of interest (ROI) on HR
estimation accuracy. Skin. Seg. means skin segmentation. !forehead means excluding forehead. (c) Effect of detection latency (amount of
time spent capturing data before estimating HR) on HR estimation accuracy. (d) Effect of ROI resolution on HR estimation accuracy.
The ROI resolution (i.e., forehead resolution) captured by a 5 MP monochrome camera at 1 m, 2m, and 3 m is displayed.

from 10 BPM to 20 BPM. Continuous monitoring using FFT
with a window size of 30s remains accurate, with MAE =
0.6 BPM. Quick screening with P2P remains acceptable, with
MAE = 2.0 BPM.

3.3. Heart Rate Measurement. HR is determined using the
POS method, which was selected for its high accuracy and
real-time performance (a more detailed discussion is pre-
sented in Supplementary Information Appendix IV).
Figure 5(a) shows sample RGB signals captured by the mono-
chrome cameras in an arbitrary lighting condition and the
resulting HR pulse calculated using the POS method. The esti-
mated HR is 66 BPM, while the ground truth is 63 BPM. This
value is less than 100.0 BPM, resulting in a negative detection
for tachycardia. rPPG with the POS method has been experi-
mentally validated by de Haan and Van Least in a well-
controlled environment with uniform lighting condition
[23]; it is not further validated in subjects wearing a mask
while maintaining social distancing. Rather, we focus on char-
acterizing the POS method at various parameters to optimize
HR estimation for Dr. Spot.

Various ROIs can be used to estimate HR, such as the
face or the forehead. These ROIs can be cropped using object
detection methods or segmented using skin segmentation
methods. Figure 5(b) shows the POS method evaluated for
various ROIs on the UBFC-rPPG dataset. The forehead
and cropped face are the most accurate for HR estimation.
However, Dr. Spot must estimate HR for subjects wearing
facemasks in a hospital triage environment. Since the sub-
jects will have their faces covered, we select the forehead as
the ROI for HR estimation.

HR can be estimated after various latencies; a latency of
n seconds means that the subject is recorded for n seconds
before an HR estimation is made. Figure 5(c) shows the
POS method evaluated for 11 subjects at various latencies.
The POS method produces more accurate HR estimations
with more recorded data. However, there is only a 10% dif-
ference between the HR estimation error for a 10s latency
and 20s latency. As discussed in Section 3.2, RR quick
screening requires 10s. Thus, we use a HR detection latency
of 10s so that both HR and RR and be determined in the
same amount of time.
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The distance of a subject from the camera affects their
ROI resolution. Figure 5(d) shows the POS method evalu-
ated at various ROI resolutions, with the forehead as the
ROI. The HR estimation error decreases exponentially with
a decreasing subject distance. For a subject at 2m, the HR
estimation MAE is 7.5 BPM.

4. Discussion

In this paper, we presented algorithms to enable a mobile,
robotic platform to monitor vital signs (skin temperature,
heart rate, and respiratory rate) using one IR camera and
three monochrome cameras without the need of standard-
ized ambient conditions and fixed measuring distance. These
algorithms are scalable through the use of commercial cam-
era systems and can enable a socially distanced healthcare
worker to easily screen for abnormal vital signs within the
first 10 seconds of a patient encounter. Such a system is
innovative and novel because it removes key boundary con-
ditions traditionally used with IR cameras and provides an
implementation pathway that allows healthcare systems to
adopt contactless systems for vital sign screening and con-
tinuous monitoring.

IR cameras have previously been used for skin tempera-
ture measurement and fever screening, yet these systems
require a fixed camera and highly regulated ambient condi-
tions [13]. The patients undergoing screening for fever must
stand at a specified position and directly face the camera to
ensure an accurate reading. While these requirements may
be acceptable in some situations, healthcare settings where
a contactless system may have high impact may not be able
to standardize conditions to permit existing IR systems to be
adopted. Our proposed method for thermal compensation
measures the skin temperature without using a static black
body, thus enabling a mobile platform which increases
opportunities for deployment in nontraditional settings like
emergency departments and field hospitals. This results in
a robust system that is able to automatically correct for the
ambient temperature and distance to the camera to provide
accurate skin temperature readings.

We presented a novel method for measuring the respira-
tory rate that relies on periodic temperature contrasts in the
facemask region of IR images. This method is particularly
applicable during the COVID-19 pandemic, where facemask
mandates have been enacted, especially in indoor settings
like hospitals. While mask mandates may change based on
local COVID-19 infection rates and political stances, most
hospital settings will likely have enduring facemask require-
ments to prevent disease transmission and protect health-
care workers. In this setting, a contactless system which
leverages the use of facemasks to calculate the respiratory
rate will continue to be applicable.

Recall that the POS method was used and adapted in the
estimation of the heart rate. An important property of the
POS method is that it utilizes the relative pulsatile ampli-
tudes in the monochrome camera channels to differentiate
variations in blood volume from variations from other
sources such as motion. However, since the rPPG methods
rely on images from monochrome cameras, the HR estima-

tion is highly sensitive to factors such as lighting conditions
and subject demographics [26]. Further work is required to
create more robust rPPG methods. Though Dr. Spot is able
to monitor skin temperature, HR, and RR, verification was
only performed on limited numbers of healthy volunteers
that approximated high HR and RR through vigorous exer-
cise. More testing is required to further verify the accuracy
of the proposed methods. Lastly, Dr. Spot is potentially
capable of monitoring SpO,. However, it would require tre-
mendous amounts of experimentation to calibrate the ambi-
ent lighting conditions as well as subject skin tone
correction, which is beyond the scope of this work.

5. Conclusion

We developed a camera system consisting of one IR camera
and three monochrome cameras to reliably facilitate con-
tactless acquisition of vital sign parameters central to tria-
ging and managing individuals with COVID-19 disease.
This camera system was mounted on a teleoperated robot,
Dr. Spot, which can successfully and reliably deliver vital
sign measurements while navigating in complex clinical
environments and maintaining social distancing. In the
COVID-19 pandemic, deploying Dr. Spot helps conserve
PPE, curbs transmission of infection, and helps clinical
detect key vital sign abnormalities.
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